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Abstract—Approximate solution of the problem on an axisymmetrical underexpanded supersonic jet

impinging upon a normal flat plate within the initial length of the jet is presented. The results of the calcula-

tion obtained in the ideal liquid treatment show the existence of appreciable vorticity in a subsonic region

close to the plate. The received values of the radial velocity gradient at the stagnation point and the vorticity

distribution are then used for calculation of a viscous flow and heat transfer in the vicinity of the stagnation

point. It is shown that the value of the heat flux at the stagnation point found with account for jet vorticity
is as large as 3-5 times that of a uniform heat flux that is verified experimentally.

NOMENCLATURE v, stream function;
r, z, cylindrical coordinates; Q, vorticity;
v, 0, velocity components; v, kinematic viscosity;
T, temperature; Aps wave length;
D, pressure; w—1 -3
P, density; a(M) = (1 + Mz) ;
T, Po Po» stagnation temperature, pressure, 2
density, respectively; w— 1 -1
Vs maximum \I/);ocity; M) = (1 + M 2) ;
L, nozzle-to-plate spacing;
n, pressure ratio; (M) —(14+%= 1 M2 THeD
M, Mach number; - 2 )
resh, coordinates of a sonic point:
Q, mass flow; Subscripts
A, coefficients in the jet vorticity spec- 0, along the plate surface for an ideal
trum (equation (28)); liquid;
k,, wave number corresponding to the w, on the wall;
n-th wave length of the vorticity 1, on gas dynamic lines (shock wave;
spectrum; slip line);
q, heat flux. ¢, refers to the triple point;
0, refers to the outer edge of the shear
Greek symbols layer of the plate.
&, distance from the plate to a gas
dynamic line; INTRODUCTION
x, specific heat ratio; THE PROBLEM of heat transfer between a super-
B, constant defined by equation (24);  sonic jet and a flat plate normal to the jet axis
o, entropy function (equation (4)); is one of the most complicated problems of gas
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dynamics to be solved at present. Despite
numerous experimental data which are often
contradictory theoretical information now avail-
able on the above problem is scanty. Empirical
dimensionless relations for the Nusselt number
of the type Nu = Nu (Pr, Re) were not and will
not be able to give an idea of the jet-plate heat
exchange since such important factors as non-
uniformity of the flow, jet turbulence, etc., have
not been taken into account in the previous
investigations. This may be a quite possible
explanation for the existing contradiction in the
experimental results on heat flux to the plate
reported by different authors as well as for a
great discrepancy (up to 10 times) between experi-
mental data and theoretical predictions. The
experimental works recently reported on heat
transfer of a jet, although showing some progress,
are based on the same dimensionless relations
for a uniform flow near the stagnation point with
a correction for turbulence and so reduce a jet
impingement problem to a model problem on
uniform flow with a known turbulence level [1].

For an essential nonuniformity of the flow
peculiar to a supersonic jet this approach may
lead to considerable errors in heat flux calcula-
tions.

Estimation of the flow nonuniformity effect
on heat transfer of an axisymmetrical supersonic
underexpanded jet with the normal flat plate is
the purpose of the present work. The flow field in
the jet impingement region is found from the
solution of the ideal problem by the integral
relationship procedure. The viscous flow near the
plate as well as heat transfer are analysed from
the solution of the Navier-Stokes equations by
the Fourier method. A steady flow is assumed,
the pressure ratio is varying in the range 2 < n
< 30, the analysis Is restricted by the considera-
tion of the jet impingement within the first
“cell” of the jet.

CALCULATION OF THE SHOCK WAVE

CONFIGURATIONS AND A FLOW IN THE
IMPINGEMENT REGION

The calculation includes the impingement
region bounded by the detached CE and the
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reflected CD shocks, the jet boundary DM,
the axis of symmetry OE, the part of the plate
OP and the limiting characteristics TP and TM

Fi6. 1. Flow pattern.

(Fig. 1). In the cylindrical coordinates the
governing system of equations is

d 8
5(1"0,) + -ag(prv,,) =0, (1)
a é ,  x—1
L s+ 2o 25| -0
o + 02 + % =1 3)

= oly2) @
where p and p are based on the corresponding
stagnation values p, and p,; v,, v, on the maxi-
mum velocity v__, the linear dimensions on the
radius of the outlet section of the nozzle.

The equation of the shock generatrix

a—iz - ctgo, Ogsr<r,, %)
and the equation of the slip line

d

af;fz —ctg 6, re<r<ry (6

are to be added to equations (1)+4) where ¢ is
the distance from the shock (slip line); ¢ and 0
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are the slopes to the shock and a velocity vector
along CT to the z-axis, respectively.

To avoid simultaneous calculation of sub-
sonic and supersonic flows, the slip line is
approximated by the following polynomial

e =a,r* + a,r + as, (N

the coefficients of which are to be found later.

The boundary conditions for' the initial
system of equations are imposed at the plate
surface and the symmetry axis

@ = (Poa vz =0, 230, (8)
7
P=0p 0=3 &=t v,=0, r=0, 9

and at the shocks, the locations of which are
unknown

D;’z = —cos{c — #)cosg —sin{g — 9)

(¢ — DYM?sin? (¢ — 9) + 2
(% + DM2sin’*(c — v) ’

X sing

%f;! = singcos{o — Jjcoso
(¢ — HM?sin? (6 — 9 + 2
(¢ + DM?sin®(c — 9)

_ 2x 2 2 x—1
pl_p[x-i-lM sin‘ (¢ — §) x—i—l]’

(¢ + DM?*sin’(c — 9)
=P DM?sin? (6 — 9) + 2°

] 2 L, -1
(p-[x+1M sin” (¢ — 9) x+l]

X [: n i T I)Mziinz - 9)] 19
where
®—1
2
x — 1

2

M2

V= Jw+v})=

1+ M?
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The boundary conditions for a subsonic flow
flowing out of the impingement region are not
put here; they are substituted by the conditions
of the regularity solution at the singular points
which result from the transition of equations
(1)+4) from the elliptical form to the hyperbolic
one.

The method of integral relationships is used to
solve equations (1(4). Consider the first approxi-
mation of this method. Integration of equations
(1) and (2) with respect to z from 0 to ¢ and
approximation of the integrand function by
the linear relations yield the following integral
relations

_‘1{3_1+<£~l§f)31 +2(4, ~ 4) =0,

dr r edr £
dc, dcC, 1de
o ta TG Gy
+—C—&1—+1§-D1=O, {11
where
A= 1}2—!-—————-%“1‘ B=pvp,;
""pz x+1p’ _p,za
C=pv; D=pv,

the subscript 0 refers to the flow parameters at
the plate, the subscript 1 refers to parameters
on the gas dynamic lines.

It is assumed that the incoming flow up to the
shock EC may be approximated by the flow
from a three-dimensional source [2]

n=JI*+~ey]= ‘/‘p[\/(%(-(];%> ) 1];

12

r

9 = arctg I—&
where M, is the Mach number at the point B
where the axis of symmetry crosses the first
characteristic of the second family from the edge
of the nozzle (Fig. 1); c is the distance from the
point B to the plate; L is the nozzle-to-plate
spacing
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qM) =

® + 1 - 1 (x+1)/2(x—1)
M 1 2
5]

The location of the free jet shock wave EC
is given by the following equation [3]

r=1+(L~e¢)tg(S; — ap)

L—¢.\?
- [1 — Iyp. + Xup, 180, — “H{K xM.DAC> s

(13)

where ¢ is the distance from the point C to the
plate; r,, , is the radius of the Mach disc in the
free jet; x,, ,, is the distance from the Mach disc
to the outlet section nozzle.

The Mach number M and the slope angle of
the velocity vector to the z-axis is chosen to be
the dependent variables (3 up and 8 down the
shock). Then calculating equations (12) and (13)
as well as the free jet flow parameters by the
method described in [3], we can write rela-
tions (11) for the region up to the triple point
C as

dM do d¢

Pig +Pig + Pag + Py =0, (14
dM, _dM _do _ d9
o Tl thg T oG om0
(15)
where
P, = ;t(M)(Z Mz)[fsm%cos c—9

—sin 2 (¢ — 9) cos 2¢ — f sin 2 o sin?

x(a—B)]%—

x []1—2 cos? (6 — 9) + sin? (o ~ 9)}

P, =1cos (e — $cos (30 — ) — cos (4o — 29)
— fsin{e — 9)sin(3c — 9)

5 [;2 cos? (g — 9)

sin 20
(¢ + DM?sin? (0 — 9)

sin 2o ctg(oc — &)
(¢ + 1)M?sin? (o —
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+ sin? (¢ — 9)],

P, = 57 ~zsin2esin 2o — 9) + cos 2o —
X cos 20 + —gsin 20 sin2(c — 9)

__sin2octglo — 9) 1
(x + DM?sin? (o — 9) [}5 cos* (¢ — 9)

+ sin? (o —9)},
11, 5 .
P4=§ Fsm?_acos (g —3)—sino — 9

X ¢0s 26 — sin 26 sin? (g — 9)f]

1 ctgo 21, 2
x(r+ s) 8[fcos (60 — Ncos“ ¢

+ 3 sin2(c — 9)sin 20 + fsin? (6 — S)SinzaJ

2 1 2%
_ =z M?2sin(c —
exM? I:x +1 sin*(o — 9)

(p—~[lf{x I)Ei

_ n(M) @7
Q.= UM (M JoM)(1 — M2)

X [-}; sinocos{oc — 9) — sin{e — 9) casa}

% — 1
%+ 1

rc(M {})
(M)

{I(M)(l - M?

1  2sinocos{c — 3
Ty DMPsin’ o - 9)f
M) ., 1

O =Mo0) 0 M YT = M)

X I:(} - 1) cos (20 — S)J —!—},17

5 2sinocos? (g — 3)
(x + DM?sin®(c — &’

ﬂ(M ) (Pu(x 1) 1
(M) 0 a(M)a(M X1

Q3=—M -"M?,)
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2sinocos? (o — 9)

1
X [F(x + OM?%sin’(c - 9) f

sin ¢

x sin (o — Y cos{o — Fcos 0'],

M
o fi- L)

(M)
st (1 1)
MM M\ 2 987

X [} sing cos (g — §) — sin (o — ) cos a]

- g[lCOS(O' — 8)cosag + sin(o — B)Sina]}
elf

x (1 — M3,
_x—1+ 2
f_x+1 (¢ + DM?sin? (0 — 9)’

@, is the value of the entropy function along the
zeroth streamline.

Differential equations (14), (15) and (5) are
used to determine the three unknowns: M (r),
o(r), &(r) within the zone re OS (Fig. 1). The
initial conditions for these equations are

M0) =0, o, 0=n?2 &0)=s,

The values of M and 8 as well as their deriva-
tives are obtained in accordance with the known
flow field before the central shock (12); integra-
tion of equations (14), (15) and (5) is carried
out up to the meeting the detached shock
(equation (5)) with the free jet shock (equation
(13)). Then the calculation of the flow parameters
in the vicinity of the triple point C is done using
the conditions of the pressure equality for the
flow along the two sides of the slip line [4].

From the triple point and further to the
periphery of the impingement region equations
(11) are rewritten as

Rdgl +R30+R =0, (16)
Sod§4°+sddl\':l+sgf+s =0, (17
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where
R, = ;M n(M )2 - M3ye(M o H*™ Dsin 26,
R, = M*m(M,)cos 20¢; />~ D

1

R, = 3 (; + the) Mz'n:(Ml) sin 26¢; 1(x—1)

&

(M) 1/~
.._.._.Q_q,o 1/ 1)],

x

- —[R(Ml) (1 + %M? cos? ) >~V

i

(M o)(Mo) (1 — M3)pg M/~

S, = (M )M )1 — M3)p7 Y~ Dsin g,
8, = Ml%cos B 11 1),
S, = MOZ_%—E%(I,J mm,(_i_ _ %g_q)

* M’g%%(”_mw(;‘ - %s_?_) sin,

@ is the slope angle of the velocity vector and
@, is the entropy function along the slip line
from the side of the subsonic flow. The function
@, is determined by the relation for ¢ from equa-
tion (10) using the slope angle o of the external
shock to the axis of symmetry at the point C;
the latter is obtained from integration of equa-
tion (14} in the previous part of the impingement
region,

The system of equations (16), (17), (6) and (8) is
used to determine the four unknown values,
namely M, M, 0 and &. For calculation of the
coefficients of the polynomial in equation (8)
we have two conditions at the point C:

& = &g,

= — ctgl,, r=re (18)

de
dr
where g, and r,, are the coordinates of the point
C. 0. is the slope angle of the slip line to the
z-axis at the point C.

The third condition is obtained at the slip
line in the vicinity of the sonic point with the
coordinates denoted by (r_,, k). Upon integration
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of equation (16) for the derivative of the Mach
number M, it may be found that this equation
has a singular point at § = =/2. It may be easily
shown that the latter point is a “saddle-type”
point. From the regularity of the solution in the
vicinity of the singular point, it follows that

de 2
—MZR(M)E; — k—;[ﬂ(M) - n(MO)

—1/{x— 1)
()]
Py

0. (19
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(21), we approximate its element of integration
by the linear function of the type

v, - V.
pV = po¥y + Lo 2y

Then expressing p and V in equation (22) in
terms of M and using the condition M, = 1

at the critical section and M, from
r.h =3 23)

where

(L — grdr

- + (Vo> JIr* + (L — ]

oaM,) f JrFr@
2

A6

q

(2hxa,

T
+ 2)-(%-1)/u - lili (&)ﬂ
Do

(2hxa, + 2)”"}

The above equation is used to determine M,
at the normal to the point T (Fig. 1). Taking
approximately that the sonic point at the
slip line coincides with the singular point we
get from equation (19) with the approximation
(8) the following expression

B
P
w—1

For determination of the coordinates of the
point T, the law of mass continuity is to be used
for the critical section r = r_ and the circular
section II parallel to the plate through the point
C (Fig. 1)

%+ 1
0 x4

2

(2hxa, + 2)~ %Dl
2

(20)

rec h
ZQ—n = ‘( rpVcos $dr = rcrj,ocr V. dz, (1)
) 0

where p, V, 3 are the flow parameters at the sec-
tionIL, p_, V,, are the same at the critical section.

Using equation (12), calculation of the first
integral in equation (21) is a straightforward

procedure; as to the second integral in equation

Equality (23) together with the conditions at
the sonic point makes the system of equations
(16), (17), (6) and (8) closed. The initial conditions
for integration of this system are those received
from integration of the previous system of
equations and from calculation of the triple
point.

Singularity points present make a peculiarity
of the latter system.

In addition to the saddle point § = 7/2 there
is a singular point M, = 1-0. Formally the
regularity of the solution of equation (16) in the
vicinity of the point # = 7,2 is secured by setting
up the approximate expression for slip line (6),
however, this regularity actually exists only when
the regularity of the solution of equation (17)
in the vicinity of the point M, = 10 is secured.
This may be done by the appropriate choice of
the parameter ¢,

A numerical solution of the above system of
equations has been obtained by the Runge-
Kutta method. The algorithm of the solution
consists in the reiterative successive integration
of the systems of equations with the purpose to
determine the only unknown parameter e,
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It is worth mentioning that the method of
integral relationships used here as well as any
of the other known approximate methods
such as approximation of the initial functions
by the Lagrange polynomials used in [5] does
not satisfy the compatibility condition at the
triple point. This may probably be attributed to
errors of the method or to a more complicated
flow pattern in the vicinity of the triple point
thanthat taken at the present stage. Thenumerical
calculations show the best agreement between
the theory and experiment on the central shock
detachment (¢,) when the triple point is calculated
from the condition of the pressure equality in
the flow along the two sides of the slip line and
at the initial slope angle . equal to that at the
point C from the side of the subsonic region.
In Fig. 2 the results of the calculations are

o

]

N e ¢\ 393
\ D

1-83

005 a

r

C 1 2 3 4

F16.2. The changes of the flow parameters along the plate and
gas dynamic lines against the radial distance r for a jet with
M, =207n=82;%=125L="1

presented for the following jet parameters:
M, =207; n = 82; » = 1-25; and nozzle-to-
plate spacing L = 7.

As follows from the solution, the nonuni-
formity (and hence the vorticity) of the flow
considerably increases in the vicinity of the
triple point. The existence of a peripheral
maximum in the velocity component normal to
the plate near the triple point induces the flow
drag coming from the stagnation point as the
sense of the vortex rotation in the vicinity of the
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triple point is opposite to that of the flow along
the plate.

As found in [6, 7], a back flow towards the
stagnation point is possible at a certain ratio
of the peripheral velocity to that in the region
behind the central shock.

The gradient of the Mach number at the stag-
nation point is calculated from the flow field
in the impingement region. For jets with p, =
70 kg/cm? the values of (dM,/dr),_, vs the
nozzle-to-plate spacing L are plotted in Fig. 3.

F1G. 3. The Mach number gradient at the stagnation point for
different nozzle-to-plate spacings L. 1: M, = 1:0; x = 1-25;
n = 39;2:1-58; 1-25; 18-2; 3: 2:07; 1-25; 8-2; 4: 1-58; 1-4; 185,

With this value known, the dimensional velocity
gradient in the vicinity of the stagnation point
may be easily calculated

B= [{x—1\JRT,(dM, 1
S PR oo

VISCOUS FLOW AND HEAT TRANSFER IN A
VISCOUS MIXING REGION NEAR THE PLATE

The calculation of the viscous flow and heat
transfer is restricted with the subsonic region
POECT (Fig. 1). With the dissipative terms
neglected, the governing equations are

ov, dv, v,
*é;'i--g'i";—'o, 25)
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Q0 vQ Q
Yo ThE Ty M
ov, Ov,
=% % 26)
oT oT 1[é*T 10 oT
”rﬁ“’za-ﬁ[zﬁ;a(’aﬂ’ 7

where using the ordinary transformations for the
flow near the stagnation point v, and v, are
based on ,/(Bv), Q on B, the linear dimensions
on /(v/B), B is the dimensional velocity gradient
at the stagnation point (see equation (24)),
T=[T,- DAT,—-T,)] T is the instan-
taneous temperature, T, and T, the wall tem-
perature and that of an undisturbed flow (far
from the wall), are taken to be constant, v is the
kinematic viscosity.

The vorticity of the flow along the gas dynamic
line ECT is expressed as the Bessel series [8]

Q =Y AkzJkr), (28)
n=1
where J, is the first order Bessel function of the
first kind.

Expression (28) may physically be interpreted
as the expression of , in the form of a spectrum
of the vortices with the wave lengths 1., 4,,...,4,
distributed along r where 4, is chosen to be the
largest or the main wave length of the spectrum.
The total effect of the above spectrum is equal to
the effect of the vortex Q, in the external flow.
In equation (28) k, = 2o, /A;; a, is the nth
root of the equation J,(x) = 0. From the equa-
tion relating the streamfunction with the vortex

Ay = —Qr

it follows that

v, z) =r’z + Z%”J1(knr)~

29
n=1

In equation (29) the first term is the stream-
function of the potential motion and the second
one is the streamfunction of the disturbed motion
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due to vorticity (nonuniformity) of the external
flow. The coefficients A, of the series are to be
calculated in every particular case of the jet
impingement from the solution of the ideal
problem, k, may be considered as a non-
dimensional wave number, of the nth vortex.
From the definition of the wave number

kA, =k A, = const
With account for equation (29) the solution

in the viscous mixing layer near the plate is to
be sought in the form

Y = r¥f(z) + Z%— f(2rd (k,r) (30)

(for the streamfunction),

T =042+ ) 0(2)J,(kr) (31)
n=1
(for the temperature).
The boundary conditions for f,, f,, 0,, 0, are

Jo(0) = f5(0) =0, foloo) =1, 6,(0) =0,
Oy(0) = 1,
L0 =f0)=0, fi(0)=4,
00 =0(0)=0 (n=123,...0) (32
According to equation (30) the expressions

for the velocity components and the vorticity

are written as
o0

.= 2 — 21 S Iok,1),

v =
n=

|
b=ty 4 ) Lt
n=1 "

Q=1+ Z <f7 —k, f"> Jkp). (33)

n
e
Consideration of the shape of the distribution
of the velocity component normal to the plate

along the line ECT for a jet with n = 82;
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L =17; M, = 207 shows that for a qualitative
analysis only one term 4, ~ 0'5 in the spectrum
(28) may be taken with the values 4, at n = 2,
3, . .. o neglected. The value of the wave
number corresponding to the first harmonic of
the spectrum k, has the order of magnitude of
about 1073, Then substituting equations (33)
and (31) into equations (25)27) and neglecting
the terms with k? yield

Y+ 2y — f2 4 1)+ z L + 20, 0]
x kL(knr) - Z(f;, f=fuf. = A (k)

- Z%‘(f Wf i = fif 0 = ADrdy(k ), (k1)

n,i

" z &(f = fo— AN k) (kn)]

n, i

=N(rz)=0, (34)

1 1 .4 1 44 7 /4
E‘.To + zfoTo + Z(ﬁ; 9;: + 2f08u + Tof:a)

Jolkar) + 15 X 6.Jrd (k) + 3 £,050Knio(kp)

+ Z -:z—‘— [i0J,k;r) J(kr) = M(r,z) (35)

Summation over n, i in equations (34) and
(35) is made for such n, i for which the condition
k,, k, < 1 is still fulfilled. For the problem solu-
tion we apply the finite Hankel transformation
to the expressions N(r,z) and M(r, z) within
the range [0, 4,/2]. Substituting the variables
r=(4,/2)x, 0 < x <1 with the notations a, = ¢,
we get

iN(x’ Z)XJO(é, x) dx = 0,
i'M(x, Z)xJ (£ x)dx = 0,
0

(& =0;383;7015;1017...)  (36)
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After calculation of the above integrals in
equation (36) at different values of & 2(n + 1)
equations are obtained for the functions f.
T, f, 0, The accuracy of the calculations is
shown to be high enough if two terms in the
series (30) and (31) are only taken.

In Fig. 4 the results of the calculation of the
heat flux towards the plate g, based on the
corresponding value for the uniform direct

50

O 035 t-0

Fi1G. 4. The relative heat flux distribution against the radial

direction x = 2r/d,. 1 (theory): A, =05; K, =10"3%

2: 10; 1073 3 (experiment): M, = 207; n = 82, % =1-25;
L =17;4:158;182; 125; 7.

stagnation-point flow (g,),., are plotted vs the
radial direction x. Here are presented also the
experimental data on heat flux towards the plate
for a jet with n = 82; M, = 2:07; L = 7 with
the vorticity parameters 4, = 0-5;k, = 1073,

The calculation has revealed that the flow
nonuniformity considerably increases the heat
transfer between the jet and the plate compared
with the uniform flow. Any increase in the flow
nonuniformity (see 4, = 10 in Fig. 4) results in
an increase of the heat flux. The disagreement
between the presented calculations and the
experimental data may probably be attributed
to the effect of the jet turbulence and the flow
dependence on time.
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INTERACTION D’UN JET SUPERSONIQUE SOUSEXTENSIF AVEC UN OBSTACLE

Résumé—La solution numérique du probléme d’une interaction du jet symétrique supersonique sous-
extensif avec un obstacle plan installé perpendiculairement a I’axe de jet dans les limites de sa partie initiale
a été presentée. Les résultats de la calculation obtenus en une formulation ainsi posée du fluide idéal
montrent qu’il existe un tourbillon considérable du fluide dans une région subsonique d’un écoulement
prés de ’obstacle. Les quantités obtenues d’un gradient de la vitesse radiale 4 proximité du point d’enraie-
ment et la distribution du tourbillon sont employés ensuite pour la calculation d’un écoulement du fluide
visqueux et le flux de chaleur au moyen de ’obstacle. On trouve que le flux de chaleur 4 I'obstacle est de
3 4 5 fois plus que celui expliqué par la théorie d’un écoulement unidimensionnel & proximité du point
d’enraiement ; le dernier fait est en accord avec les données expérimentales disponibles.

ZUSAMMENWIRKEN DES UNVERBREITERTEN UBERSCHALLSTRAHLS MIT
EINEM HINDERNIS

Zusammenfassung—Im Arbeit wird die Losung der Aufgabe iiber die Stromung der Flissigkeit im Gebiet
der Minimaleinwirkung beim Zusammenwirken des Uberschallstrahls mit einem flachen senkrechten
Hindernis innerhalb der Grenzen des Anfangsabschichts angefiihrt. Die in der Voraussetzung der rei-
bungslosen Fliissigkeit durchgefiihrte Rechnungen zeigten die Existenz wesentlichen Wirbelstroms im
Unterschallstromungsgebiet. Die ergebenen Werte des Geschwindigkeitsgradients im Bremsepunkt und
Grossen des Wirbels wurden dann fiir die Rechnung der klebrigen Strémung und des Warmedurchgangs
im Bremsepunktgebiet ausgenutzt. Als Resultat der Losung wird festgestellt, dass die Grosse des Wiarme-
flusses im Bremsepunkt den entsprechenden Wert fiir den wirbelfreien Strom um 3-5 Male iibertraf, wenn
die Wirbelbewegung des einfallenden Stromes in Betracht gezogen wird. Diese Tatsache wird durch
Versuchsangaben bestitigt.

B3AMMOJENCTBUE HEJOPACUIMPEHHON CBEP3BYKOBON CTPYU
C TIPETPALION

AnHoranua—IIpuBogurcA npubIHeHHOe PEIICHNE 3a/ia4 O TeYeHUHU FKUAKOCTH B 00iacTu
MHUHUMAJLHOTO BJIWAHNA NPW B3aUMONENHCTBHM CBEPX3BYKOBON HeXOpaCIUPEHHOH CTPYH C
[UIOCKOH HOPMAJBHO paCHOJOHEHHOW Nperpajofl B mpepenax HAYAJIBHOIO y4YacTHa CTPYH.
PesyabTaTH pacyeTa B DPENIOJNOMEHUN MIEANBHOCTH MKUAKOCTH NOKA3AIM CYUIECTBOBAHUE
BHAUUTEJbHON 3aBMXPEHHOCTH B 06JacTH JO3BYKOLOTO TedeHudA. IlosiyueHHBle 3HAYCHUA
IpajieHTa CKOPOCTH B TOYKE TOPMOKEHMA M BeMYUMHLI BHXPA 3aTeM MCHOJL30BAHBI [
pacdera BASKOTO TeUeHMA U Terllroo0MeHa R odmactu BOausu nperpags. B pesyuabrare
peleHNA YCTaHOBJIEHO, YTO BeJINUNHA TeNIOBOTO [IOTORA B TOUKE TOPMOMEHIY, ONpeleNeHHas
¢ y4eTOM B3aBUXPEHHOCTH JTOTOKA CTPY¥, HPEBOCXOLNT COOTBETCTBYIOLee RHAYEHHUE 1A
PABHOMEPHOrO MOTOKA B 3-D pas; MociefHMit GaKrT MOATBEPKAAETCH JHCHEDHMCHTAIbLHBIMY
JAHHBIMH .,



