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SUPERSONIC UNDEREXPANDED JET IMPINGEMENT 
UPON FLAT PLATE 
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Mechanical Institute, Leningrad, USSR 

(Received 15 March 1973) 

Ahstrati-Approximate solution of the problem on an axisymmetrical underexpanded supersonic jet 
impinging upon a normal flat plate within the initial length of the jet is presented. The results of the calcula- 
tion obtained in the ideal liquid treatment show the existence of appreciable vorticity in a subsonic region 
close to the plate. The received values of the radial velocity gradient at the stagnation point and the vorticity 
distribution are then used for calculation of a viscous flow and heat transfer in the vicinity of the stagnation 
point. It is shown that the value of the heat flux at the stagnation point found with account for jet vorticity 

is as large as 3-5 times that of a uniform heat flux that is verified experimentally. 

NOMENCLATURE 

cylindrical coordinates; 
velocity components; 
temperature; 
pressure; 
density; 
stagnation temperature, pressure, 
density, respectively; 
maximum velocity; 
nozzle-to-plate spacing; 
pressure ratio; 
Mach number; 
coordinates of a sonic point: 
mass flow; 
coefficients in the jet vorticity spec- 
trum (equation (28)); 
wave number corresponding to the 
n-th wave length of the vorticity 
spectrum; 
heat flux. 

Subscripts 
0, 

W, 

1, 

stream function; 
vorticity ; 
kinematic viscosity; 
wave length; 
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along the plate surface for an ideal 
liquid; 
on the wall; 
on gas dynamic lines (shock wave; 
slip line); 
refers to the triple point; 
refers to the outer edge of the shear 

Greek symbols layer of the plate. 
s, distance from the plate to a gas 

dynamic line; INTRODUCTION 

;: 
specific heat ratio; 
constant defined by equation (24); 

THE PROBLEM of heat transfer between a super- 
sonic jet and a flat plate normal to the jet axis 

cp, entropy function (equation (4)); is one of the most complicated problems of gas 
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dynamics to be solved at present. Despite 
numerous experimental data which are often 
contradictory theoretical information now avail- 
able on the above problem is scanty. Empirical 
dimensionless relations for the Nusseit number 
of the type Nu = Nu (Pr, Re) were not and will 
not be able to give an idea of the jet-plate heat 
exchange since such important factors as non- 
uniformity of the flow, jet turbulence, etc., have 
not been taken into account in the previous 
investigations. This may be a quite possible 
explanation for the existing contradiction in the 
experimental results on heat flux to the plate 
reported by different authors as well as for a 
great discrepancy (up to 10 times) between experi- 
mental data and th~retic~ predi~ions. The 
experimental works recently reported on heat 
transfer of a jet, although showing some progress, 
are based on the same dimensionless relations 
for a unwon flow near the stagnation point with 
a correction for turbulence and so reduce a jet 
impingement problem to a model problem on 
uniform flow with a known turbulence level Cl]. 

For an essential nonuniformity of the flow 
peculiar to a supersonic jet this approach may 
lead to considerable errors in heat flux calcula- 
tions. 

Estimation of the flow ~onunifo~ity effect 
on heat transfer of an axisymmetrical supersonic 
underexpanded jet with the normal flat plate is 
the purpose of the present work. The flow field in 
the jet impingement region is found from the 
solution of the ideal problem by the integral 
relationship procedure. The viscous flow near the 
plate as well as heat transfer are analysed from 
the solution of the ru’avier-Stokes equations by 
the Fourier method. A steady flow is assumed, 
the pressure ratio is varying in the range 2 < II 
G 30, the analysis is restricted by the considera- 
tion of the jet impingement within the first 
“cell” of the jet. 

CALCULATION OF THE SHOCK WAVE 
CONFIGURA~ONS AND A FLOW IN THE 

IMPINGEMENT REGJON 

The calculation includes the impingement 
region bounded by the detached CE and the 

reflected CD shocks, the jet boundary DM, 
the axis of symmetry OE, the part of the plate 
OP and the limiting characteristics TP and TM 

FIG. 1. Flow pattern. 

(Fig. 1). In the cylindrical coordinates the 
governing system of equations is 

where p and p are based on the corresponding 
stagnation values p. and po; uz, u, on the maxi- 
mum velocity u_, the linear dimensions on the 
radius of the outlet section of the nozzle. 

The equation of the shock generatrix 

ds -= 
dr 

- ctg @, O<r<rc, (5) 

and the equation of the slip line 

dc: -= 
dr 

- ctg 01, rc < P < rB (6) 

are to be added to equations (lH4) where c is 
the distance from the shock (slip line); 0 and B 
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are the slopes to the shock and a velocity vector 
along CT to the z-axis, respectively. 

To avoid simultaneous calculation of sub- 
sonic and supersonic flows, the slip line is 
approximated by the following polynomial 

E = air2 + a2r + a3, (7) 

the coefficients of which are to be found later. 
The boundary conditions for’ the initial 

system of equations are imposed at the plate 
surface and the symmetry axis 

cp = (PO, v, = 0, 2= 0, (8) 

4(1= (PO, 0 =;, & = Eo, v, = 0, I = 0, (9) 

and at the shocks, the locations of which are 
unknown 

L 
V 

-COS(LT - l3)coscr - sin@ - 9) 

’ sin(z 

(x - 1)W sin’ (a - 9) + 2 

(x f 1)M2 sin2 (a - v) ’ 

- = sincrcos(a - 9)coso 
V 

1)M2 sin2 (d - 9) + 2 

x (‘(ii + 1)W sin2 (cr - 9) ’ 

PI ‘P 
[ 

$$ M2 sin2 (0 - 9) - x-l 
x+1 1 , 

(x + l)A4’ sin2 (a - 3) 

” = ‘(x - l&f2 sin2 (0 - 9) + 2’ 

cp= 
[ 

x-l 
~M2sinZ(~-~)-~ 1 
[ X-l 2 

x- 
x + 1 + (x + l&f2 sin2 (fl - 9) 1 x WI 

where 

X-l 

v = J(v,” + 23,“) = 
i 

TM2 

l+ 
X-l . 
TM2 

The boundary conditions for a subsonic flow 
flowing out of the impingement region are not 
put here; they are substituted by the conditions 
of the regularity solution at the singular points 
which result from the transition of equations 
(l)-(4) from the elliptical form to the hyperbolic 
one. 

The method of integral relationships is used to 
solve equations (l)-(4). Consider the first approxi- 
mation of this method. Integration of equations 
(1) and (2) with respect to z from 0 to E and 
approximation of the integrand function by 
the linear relations yield the following integral 
relations 

B, + :(A, - A,) = 0, 
E 

+ Co + C1 
r 

where 

1 
A = pv; -I- =p; 

x+1 
B = yv,v, ; 

c = pv,; f) = PVz, 

the subscript 0 refers to the flow parameters at 
the plate, the subscript 1 refers to parameters 
on the gas dynamic lines. 

It is assumed that the incoming flow up to the 
shock EC may be approximated by the flow 
from a three-dimensional source [2] 

q = J[r2 + (c - &?I =J&/($g)- I]: 
3 = arctg &, (12) 

where M, is the Mach number at the point B 
where the axis of symmetry crosses the first 
characteristic of the second family from the edge 
of the nozzle (Fig 1); c is the distance from the 
point B to the plate; L is the nozzle-to-plate 
spacing 
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1 
(x+ 1)/2(x- 1) 

4(M) = M 

+ sin2 (0 - 9) 1 , 
The location of the free jet shock wave EC 

P, = isin20sin2(lr - 9) + cos2(rr - 9 
2f 

is given by the following equation [3] 

Y = 1 + (L - EC) tg (QH - oIH) x cos 20 -t- g sin 20 sin 2(0 - 9) 

+ X&&D. tg (9, - fQ 

(13) 

where cc is the distance from the point C to the 
plate; r,., is the radius of the Mach disc in the 
free jet; x~.~. is the distance from the Mach disc 
to the outlet section nozzle. 

The Mach number M and the slope angle of 
the velocity vector to the z-axis is chosen to be 
the dependent variables (9 up and 6 down the 
shock). Then calculating equations (12) and (13) 
as well as the free jet flow parameters by the 
method described in [3], we can write rela- 
tions (11) for the region up to the triple point 

sin 20 ctg (a - 9) 

- (x + t)W sin2 (0 - 8) L 
-!-co? (5 - 9) 
f 2 

+ sin2 (r7 - 9) 1 , 
P, = i 

[ 
f sin 20 co? (CT - 9) - sin 2(a - 9) 

x cos 20 - sin 20 sin2 (a - 9)f 1 

++sin2(a - @sin20 +fsin’(a - @sin20 1 
C as 

_.I 

2 1 

P,g+P,g+P,$+P,=O, (14) 

--_ 
EXM2 L 

$ M2 sin2(cr - 9) 

dlM 
~+Q45Q2~+Q3d~+Q,=0, 

- 

(15) Q, = 

where 

p =YQ 
1 2F(2 - M2) 

[ 

;sin2rrcosZ(0 - 9) 

X 

t - sin 2 (a - 9) cos 20 - f’ sin 2 D sin’ 

K-l x(WJ 
x+1 

-II/ix-111, 
71(M) qo 1 

x (G - 9) 1 sin 20 
+ 

(x + I&f2 sin2 (~7 - 9) 

[ 

1 
x pcos2(a - 9) + sin2 (a - 9) 1 , 

4M) l/C- 1) 
'PO 

i 
WN 1 - M2) 

sincrcos(a - 9) - sin@ - 9)coso 1 
1 2sinocos(o - 3) 

p(x + 1)M2 sin2 (0 - 9) I ’ 

P, =+s(, - 9)cos(30 - 8) - cos(40 - 29) 2 sin d cos2 (a - 9) 

-f sin(0 - 9)sin(3cr - 9) x (x + 1)AP sin3 ((i - 9)’ 

sin 20ctg (d - 9) 

+ (x + 1)M2 sin2 (~7 - 9) f 2 [ 
” cos2 (G - l9) Q3 = - M # d”“- *) atMlorfM ‘x1 _ M2) 

0 0 0 
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[ 

1 2sinocosQ3 -8) 1 . 

’ p(x + 1)MZsin2(0 - 9) -T”m” 

x sin(fT - 9)cos(a - S)coScr 1 , 

[ 

1 

x T 
sinacos(o - 9) -sin(o - 9)cosa 1 

2 1 
-- 

C 
-cos(cT - qcosa + sin(tT - 

8.f 

S)sina Ii x (1 - A4$- 1, 

X- 

"f =i+ -+(X + I)i%f2in2(5 - 8) 

q0 is the value of the entropy function along the 
zeroth streamline. 

Differential equations (14), (15) and (5) are 
used to determine the three unknowns: M,(r), 
c(r), e(r) within the zone r~ OS (Fig. 1). The 
initial conditions for these equations are 

M&O) = 0, 50(O) = ~/~, E(O) = EO. 

The values of M and 9 as well as their deriva- 
tives are obtained in accordance with the known 
flow field before the central shock (12); integra- 
tion of equations (14), (15) and (5) is carried 
out up to the meeting the detached shock 
(equation (5)) with the free jet shock (equation 
(13)). Then the calculation of the flow parameters 
in the vicinity of the triple point C is done using 
the conditions of the pressure equality for the 
flow along the two sides of the slip Iine [4]. 

From the triple point and further to the 
periphery of the impingement region equations 
(11) are rewritten as 

R,%+R2$+R3 =0, (16) 

s, d$Q + s, T -t s, f -t s, = 0, (17) 

where 

RI r 9!f,n(M,)(2 - M:)r(M,)lrp; l’(x-“‘sin 28, 

R2 
= M~7@4,)cos 2eyl;“(X-‘) 

R, 
1 1 

f - ( - +; ctge > ~~~(~~)s~23~~l’(~-l) 
2 r 

2 W)(l + ~&f2COS2tf)(P-ll(r-l) --- 

[ & x 
1 1 

c- 'PO 1 nf"O) - i/(x-l) 2 x 
SO 

s off (1 - M,2kP, l’tu- l) 

Sl = @.#;)#q (1 - M:)cp; l’(x- “‘sin 8, 

s2 = M llt”l) - cos eq; I’M - “), 
l 4M,) 

s3 =M 

CM sin 8, 

0 is the slope angle of the velocity vector and 
‘pl is the entropy function along the slip line 
from the side of the subsonic flow. The function 
‘pr is determined by the relation for 40 from equa- 
tion (10) using the slope angle o of the external 
shock to the axis of symmetry at the point C; 
the latter is obtained from integration of equa- 
tion (14) in the previous part of the impingement 
region. 

The system of equations (16), (17), (6) and (8) is 
used to determine the four unknown values, 
namely MO, M,, 8 and s. For calculation of the 
coefficients of the polynomial iu equation (8) 
we have two conditions at the point C: 

de 
& = &c, 

dr= 
- cWc, r=r C’ (18) 

where ec and rc are the coordinates of the point 
C. 0, is the slope angle of the slip line to the 
z-axis at the point C. 

The third condition is obtained at the slip 
line in the vicinity of the sonic point with the 
coordinates denoted by (r,+ h). Upon integration 
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of equation (16) for the derivative of the Mach (21) we approximate its element of integration 
number M, it may be found that this equation by the linear function of the type 
has a singular point at 6 = 742. It may be easily 
shown that the latter point is a “saddle-type” PV = PO& + 

PlVi - UOV, 
h . 

122) 
point. From the regularity of the solution in the 
vicinity of the singular point, it follows that Then expressing p and I/ in equation (22) in 

-M%(M) $ - ; 
[ 

terms of M and using the condition M, = 1 
n(M) - n(M,) at the critical section and MO from 

x ~~)-“‘“‘)I = 0. 
rcrh = 8, (23) 

(19) where 

FC 

f 

(L - &)r dr 

WW,) (JCr2 + (C - sf21 f &/W2 J[r2 + (L - 421 

ci = ;{1 + J(-&)[++)“‘(2hxa, + 2)-(x-1)Ix - l]i(?.$ (2hxa, + 24 

The above equation is used to determine M, 

at the normal to the point T (Fig. 1). Taking 
approximately that the sonic point at the 
slip line coincides with the singular point we 
get from equation (19) with the approximation 
(8) the following expression 

x+1 i& 1/X 
M; =- 

0 x-1 (PO 
(2hxa, + 2)-(x-1)‘X 

2 -~ 
x- 1’ (20) 

For determination of the coordinates of the 
point ?; the law of mass continuity is to be used 
for the critical section r = rcr and the circular 
section II parallel to the plate through the point 
C (Fig. 1) 

rc h 

Q 
271= s rpY cos 9 dr = rcr 

s 
p,, Vcr dz, (21) 

0 0 

where p, K 9 are the flow parameters at the sec- 
tion II, p,*, V, are the same at the critical section. 

Using equation (12), calculation of the first 
integral in equation (21) is a straightforward 
procedure; as to the second integral in equation 

Equality (23) together with the conditions at 
the sonic point makes the system of equations 
(16), (17), (6) and (8) closed. The initial conditions 
for integration of this system are those received 
from integration of the previous system of 
equations and from calculation of the triple 
point. 

Singularity points present make a peculiarity 
of the latter system. 

In addition to the saddle point 0 = 742 there 
is a singular point M, = 14. Formally the 
regularity of the solution of equation (16) in the 
vicinity of the point B = $2 is secured by setting 
up the approximate expression for slip line (6), 
however, this regularity actually exists only when 
the regularity of the solution of equation (17) 
in the vicinity of the point M, = 10 is secured. 
This may be done by the appropriate choice of 
the parameter a0 

A numerical solution of the above system of 
equations has been obtained by the Runge- 
Kutta method. The algorithm of the solution 
consists in the reiterative successive integration 
of the systems of equations with the purpose to 
determine the only unknown parameter e,,. 
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It is worth mentioning that the method of 
integral relationships used here as well as any 
of the other known approximate methods 
such as approbation of the initial functions 
by the Lagrange polynomials used in [S] does 
not satisfy the compatibility condition at the 
triple point. This may probably be attributed to 
errors of the method or to a more complicated 
flow pattern in the vicinity of the triple point 
than that taken at the present stage.Thenumerical 
calculations show the best agreement between 
the theory and experiment on the central shock 
detachment (cO) when the triple point is calculated 
from the condition of the pressure equality in 
the flow along the two sides of the slip line and 
at the initial slope angle 6, equal to that at the 
point C from the side of the subsonic region. 
In Fig. 2 the results of the calculations are 

FIG. 2. The changes of the flow parameters along the plate and 
gas dynamic lines against the radial distance r for a jet with 

Ma = 2.07: n = 8.2; x = 1.25; L = 7. 

presented for the following jet parameters: 
M, = 2.07; n = 8-2; x = 1.25; and nozzle-to- 
plate spacing L = 7. 

As follows from the solution, the nonuni- 
formity (and hence the vorticity) of the flow 
considerably increases in the vicinity of the 
triple point. The existence of a peripheral 
maximum in the velocity component normal to 
the plate near the triple point induces the flow 
drag coming from the stagnation point as the 
sense of the vortex rotation in the vicinity of the 

triple point is opposite to that of the flow along 
the plate. 

As found in [6, 7], a back flow towards the 
stagnation point is possible at a certain ratio 
of the peripheral velocity to that in the region 
behind the central shock. 

The gradient of the Mach number at the stag- 
nation point is calculated from the flow field 
in the imp~gement region. For jets with p0 = 
70 kg/cm2 the values of (dlM,/dr)r,O vs the 
nozzle-to-plate spacing L are plotted in Fig. 3. 

02 

dM 

dZ 

0, I 

I 

\\ 

4 +A 5 

L 

FIG. 3. The Mach number gradient at the stagnation point for 
different nozzle-to-plate spacings L 1: Ma = 1.0; x = 1.25; 
n = 39; 2: 1.58; 1.25; 18.2; 3: 2.07; 1.25; 8.2; 4: 1.58; 1.4; 18.5. 

With this value known, the dimensional velocity 
gradient in the vicinity of the stagnation point 
may be easily calculated 

VISCOUS FLOW AND HEAT TRANSFER IN A 
VISCOUS MIXING REGION NEAR THE PLATE 

The calculation of the viscous flow and heat 
transfer is restricted with the subsonic region 
POECI (Fig. 1). With the dissipative terms 
neglected, the governing equations are 

!?%+!%+!i=(), 
P 
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where using the ordinary transformations for the 
flow near the stagnation point v, and vz are 
based on ,/(fiv), D on B, the linear dimensions 
on ,/(v//3), /3 is the dimensional velocity gradient 
at the stagnation point (see equation (24)), 
T = [(‘ii - T)/(Tw - TJ], T is the instan- 
taneous temperature, T, and Tm, the wall tem- 
perature and that of an undisturbed flow (far 
from the wall), are taken to be constant, v is the 
kinematic viscosity. 

The vorticity of the flow along the gas dynamic 
line ECT is expressed as the Bessel series [8] 

Q, = f +$&(k,r), (28) 
n=l 

where Jr is the first order Bessel function of the 
first kind. 

Expression (28) may physically be interpreted 
as the expression of s2, in the form of a spectrum 
of the vortices with the wave lengths A,, a,, . . . , In 
distributed along I where 1, is chosen to be the 
largest or the main wave length of the spectrum. 
The total effect of the above spectrum is equal to 
the effect of the vortex Q, in the external flow. 
In equation (28) k, = 2cr,/&; a,, is the nth 
root of the equation J,(a) = 0. From the equa- 
tion relating the streamfunction with the vortex 

it follows that 

$(r, z) = r2z + 
mA 

c 
$ rzJ,(k,r). (2% 

” 
n=l 

In equation (29) the first term is the stream- 
function of the potential motion and the second 
one is the streamfunction ofthe disturbed motion 

due to vorticity (nonuniformity) of the external 
flow. The coefficients An of the series are to be 
calculated in every particular case of the jet 
impingement from the solution of the ideal 
problem, kn may be considered as a non- 
dimensional wave number, of the nth vortex. 
From the definition of the wave number 

k,ln = k,l, = const. 

With account for equation (29) the solution 
in the viscous mixing layer near the plate is to 
be sought in the form 

ti = r’f,(z) + 
O” 1 c k f,(z)rJ, (k,r) (30) 

n 
n=l 

(for the streamfunction), 

T = e,(z) + f fJn(.4J,,(knr) 
n=l 

(31) 

(for the temperature). 
The boundary conditions for fO, f,, B,,, 0, are 

f,(O) = fb(0) =o, fb(a$ = 1, O,(O) = 0, 

I, = I, 

f,(O) = f;(O) = 0, f;(co) = An, 

en(O) = B,(co) = 0, (n = 1,2,3,. . . GO). (32) 

According to equation (30) the expressions 
for the velocity components and the vorticity 
are written as 

D = rf; + r(g - knfn)I,(knr). (33) 

n=l 

Consideration of the shape of the distribution 
of the velocity component normal to the plate 
along the line ECT for a jet with n = 8.2; 
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L=7; M. = 2.07 shows that for a qualitative 
analysis only one term A, N @5 in the spectrum 
(28) may be taken with the vahms A, at n = 2, 
3, . * . co neglected. The value of the wave 
number corresponding to the first harmonic of 
the spectrum k, has the order of magnitude of 
about 10e3. Then substituting equations (33) 
and (31) into equations (29--o--(7) and neglecting 
the terms with e yield 

r”(f;(I + 2f,S;; - f: + 1) f 
c 

t-f: + 2u&f31 
” 

-1 $ (f if; - _(f:: - ~~)rJo(kir)Jl(knr) 
n n, i 

+ c +A8iJl(kir) J,(k,r) = M(r,z), (35) 
n n, i 

After calculation of the above integrals in 
equation (36) at different values of r 2(n + 1) 
equations are obtained for the functions .fO. 
T,, fti 8, The accuracy of the calculations is 
shown to be high enough if two terms in the 
series (30) and (31) are only taken. 

In Fig. 4 the results of the calculation of the 
heat flux towards the plate 4, based on the 
corresponding value for the uniform direct 

)- 

I’ 

I I I 1 
05 10 

X 

FIG. 4. The relative heat flux distribution against the radial 
direction x = Zr/L,. 1 (theory): A, = 03; K, = 10m3; 

2: 1.0; 10e3. 3 (experiment): M,, = 2.07; n = 8.2;%=1*25; 
L. = 7: 4: 193; 18.2; 1.25: 7. 

Summation over IZ, i in equations (34) and 
(35) is made for such n, i for which the condition 
k,,, ki 6 1 is still fulfilled. For the problem solu- 
tion we apply the finite Hankel transformation 
to the expressions N(r, z) and M(r, z) within 
the range [O, &/2]. Substitut~g the variables 
T = @,/2)x, 0 G x < 1 with the notations a0 = c, 
we get 

i N(x, z)xJ,(& x) dx = 0, 

1 M(x, z)xJ& l) dx = 0, 

(5 = 0; 3.83; 7.015; 10.17.. .) 

The calculation has revealed that the flow 
nonuniform considerably increases the heat 
transfer between the jet and the plate compared 
with the uniform flow. Any increase in the flow 
nonuniformity (see A, = 1Q in Fig. 4) results in 
an increase of the heat flux. The disagreement 
between the presented calculations and the 
experimental data may probably be attributed 
to the effect of the jet turbulence and the flow 

(36) dependence on time. 

sta~ation-ant flow (~,&_. are plotted vs the 
radial direction X. Here are presented also the 
experimental data on heat flux towards the plate 
for a jet with n = 8-2; Ma = 2.07; L = 7 with 
the vorticity parameters A, = 05; k, = 10W3. 
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INTERACTION DUN JET SUPERSONIQUE SOUSEXTENSIF AVEC UN OBSTACLE 

R&m&-La solution numerique du probleme dune interaction du jet symetrique supersonique sous- 
extensif avec un obstacle plan install& perpendiculairement a l’axe de jet dans les limites de sa partie initiale 
a Cte present&e. Les r&hats de la calculation obtenus en une formulation ainsi PO& du fluide ideal 
montrent qu’il existe un tourbillon considerable du fluide dans une region subsonique dun tcoulement 
pres de l’obstacle. Les quantitb obtenues d’un gradient de la vitesse radiale a proximite du point d’enraie- 
ment et la distribution du tourbillon sont employes ensuite pour la calculation dun Ccoulement du fluide 
visqueux et le flux de chaleur au moyen de l’obstacle. Gn trouve que le flux de chaleur a l’obstacle est de 
3 a 5 fois plus que celui explique par la theorie dun ecoulement unidimensionnel a proximite du point 

d’enraiement ; le dernier fait est en accord avec les don&es experimentales disponibles. 

ZUSAMMENWIRKEN DES UNVERBREITERTEN UBERSCHALLSTRAHLS MIT 
EINEM HINDERNIS 

Zmammenfassung-Im Arbeit wird die Losung der Aufgabe ilber die Strijmung der Fltissigkeit im Gebiet 
der Minimaleinwirkung beim Zusammenwirken des Uberschallstrahls mit einem flachen senkrechten 
Hindemis innerhalb der Grenzen des Anfangsabschichts angeBihrt. Die in der Voraussetztmg der rei- 
bungslosen Fllissigkeit durchgefiihrte Rechmmgen zeigten die Existenz wesentlichen Wirbelstroms im 
UnterachallstrBmungsgebiet. Die ergebenen Werte des Geschwmdigkeitsgradients im Bremsepunkt und 
Griissen des WirbeIs wurden dann fIlr die Rechnung der klebrigen Striimung und des WIrmedurchgangs 
im Bremsepunktgebiet ausgenutzt. Als Resultat der Liisung wird festgestellt, dass die GrGsse des W&me- 
flusses im Bremsepunkt den entsprechenden Wert fti den wirbelfreien Strom um 3-5 Male iibertraf, wenn 
die Wirbelbewegung des einfallenden Stromes in Betracht gezogen wird. Diese Tatsache wird durch 

Versuchsangaben bestltigt. 

BSAHMOAEBCTBBE HEfiOPACILIkiPEHHO~ CBEP3BYHOBOfi CTPYM 
C IIPErPALJOm 

AHEOT~I~~I-II~ABO~HTCX npH6JIHxtCHHOe pemeHae 3aAaYH 0 Te4eHHH ?KHRKOCTH B 06naCTH 
MHHHMaJtbHOrO BJIHHHRH “P&l B3aMMO~ettCTBHA CBepX3ByKOBOH He~OpaCLtIHpeHHOti CTpyH C 
nJIOCKOti HOpMaJrbHO paCnOnOHteHHOH nparpanog B npegenaX HRHaJIbHOrO yHaCrKa CTpyH. 
Fe3yJIbTaTbI paCYeTa R npeAnOnO?KeHHH H~eanbHOCTH H(HAKOCTH nOKa3a.nH CymCC.TBOBaHMe 
3HaHHTenbHOH 3aBHXpeHHOCTH B o6nacTH AO3ByKOEOrO Te9eHBH. nOny’EHHbI,re 3HalIeHMR 

rpanHeHTa CK~P~CTM B TOqKe TOpMO%=?HHH H ROJlLIYIZHLd BHXPH 33Tt?M MClIOJIL30BaHbI &!lH 

paCWT3 BRSKOFO Te=It?HHH PI TeIIrOO6MeHa R 06JIaCTI4 B6JIAaH nperpa~b1. B pCaynbTaTe 
PCIIICHHH yCTaHOBneH0, HTO BeJIHHIZHa TenJIOBOrO lIOTOKa B TOHK4 TOpMOH0?HHn. OIIpe~WIeHHaR 

C j’W!TOM 3aBtiXpeHHOCTl’i IlOTOKa CTPYM, npeuoCxoAHT COOTBeTCTByIOIIfW aHaHeHHe AJIfI 
PaBHOMepHOI-0 nOTOK B 3-5 pa:~ ; nOCneRHLiti @aKT n’Zl~TBep?K&%5’TCR BKCneI)II~IeHTaJIbHbIMI~ 

;ZaHHbIMII. 


